Effects of alpha-dendrotoxin on K+ currents and action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons.

نویسندگان

  • Shinki Yoshida
  • Shigeji Matsumoto
چکیده

To determine whether the alpha-dendrotoxin (alpha-DTX)-sensitive current [D current, slow inactivating transient current (I(D))] contributes to the modification of neuronal function in small-diameter adult rat trigeminal ganglion (TG) neurons insensitive to 1 microM tetrodotoxin (TTX), we performed two different types of experiments. In the voltage-clamp mode, two distinct K+ current components, a fast inactivating transient current (I(A)) and a dominant sustained current (I(K)), were identified. Alpha-DTX (0.1 microM), ranging from 0.001 to 1 microM, maximally decreased I(A) by approximately 20% and I(K) by approximately 16.1% at a +50-mV step pulse, and 0.1 microM alpha-DTX application increased the number of action potentials without changing the resting membrane potential. Irrespective of the absence and presence of 0.1 microM alpha-DTX, applications of 4-aminopyridine (4-AP; 0.5 mM) and tetraethylammonium (TEA; 2 mM) inhibited approximately 50% inhibition of I(A) and I(K), respectively. 4-AP (0.5 mM) depolarized the resting membrane potential and increased the number of action potentials in the absence or presence of 0.1 microM alpha-DTX. TEA prolonged the duration of action potentials in the absence or presence of 0.1 microM alpha-DTX. These results suggest that I(D) contributes to the modification of neuronal function in adult rat TTX-resistant TG neurons, but after the loss of I(D) due to 0.1 microM alpha-DTX application, 4-AP (0.5 mM) and TEA (2 mM) still regulate the intrinsic firing properties of action potential number and shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of -Dendrotoxin on K Currents and Action Potentials in Tetrodotoxin-Resistant Adult Rat Trigeminal Ganglion Neurons

To determine whether the -dendrotoxin ( -DTX)-sensitive current [D current, slow inactivating transient current (ID)] contributes to the modification of neuronal function in small-diameter adult rat trigeminal ganglion (TG) neurons insensitive to 1 M tetrodotoxin (TTX), we performed two different types of experiments. In the voltage-clamp mode, two distinct K current components, a fast inactiva...

متن کامل

Kinetic properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channel currents in neonatal rat trigeminal ganglion neurons.

The kinetic properties of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na' channels in acutely dissociated neonatal rat trigeminal ganglion neurons were studied using whole-cell and cell-attached patch-clamp recordings. The time course of TTX-R currents was slower than that of TTX-S currents. Compared with TTX-S currents, TTX-R currents had more positive half-activation and...

متن کامل

Voltage-dependent sodium and calcium currents in acutely isolated adult rat trigeminal root ganglion neurons.

Voltage-dependent sodium (INa) and calcium (ICa) currents in small (<30 microM) neurons from adult rat trigeminal root ganglia were characterized with a standard whole cell patch-clamp technique. Two types of INa showing different sensitivity to tetrodotoxin (TTX) were recorded, which showed marked differences in their activating and inactivating time courses. The activation and the steady-stat...

متن کامل

Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons

BACKGROUND Amitriptyline (AMI) is tricyclic antidepressant that has been widely used to manage various chronic pains such as migraines. Its efficacy is attributed to its blockade of voltage-gated sodium channels (VGSCs). However, the effects of AMI on the tetrodotoxin-resistant (TTX-r) sodium channel Nav1.9 currents have been unclear to present. RESULTS Using a whole-cell patch clamp techniqu...

متن کامل

Effects of (−)-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

The (-)-gallocatechin-3-gallate (GCG) concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 314 1  شماره 

صفحات  -

تاریخ انتشار 2005